Course Information Sheet

University: University of Presov						
Faculty: Faculty of Humanities and Natural Sciences						
Code: 2EKO/ZELCHE/22 Title of Course: Green chemistry						
Form of Study: lectures 2 hours per week, seminar 1 hour per week						
Number of contact hours:						
per week: 2+1 per level/semester: 20 hours lectures, 10 hours seminars, 90 hours self-						
study						
Method of study: full-time study						
Number of credits: 5						
Semester: 2.						
Degree/Level: 1.						
Prerequisities: -						
Grading Policy (Assessment/Evaluation):						
Final exam 70 %.						
Continuous semestral examination during seminars 30 %.						
Success criteria (percentage):						
a) $A - 100.00 - 90.00\%$						
b) $B - 89.99 - 80.00\%$						
c) C - 79.99 - 70.00%						
d) D - 69.99 - 60.00%						
e) E - 59.99 - 50.00%						
f) FX - 49.99 and less%.						
Aims and Objectives:						
After the completion of this course, students will:						
- understands the principles of sustainable development and green chemistry:						
- know about new trends in "green" technologies for industry:						
- can do the basic chemometric calculations to compare the environmental impact of chemical						
reactions.						
Syllabus/Indicative Content:						
1. Principles of sustainable development and green chemistry. Green chemistry and						
industry Waste minimization						
2. Green chemistry and sustainable development. Green chemistry and sustainability						
parameters.						
3. Chemometric calculations to determine the environmental impact of chemical reactions.						
4. Life cycle assessment to identify more sustainable products and processes.						
5. Industrial processes using solid acid catalysts.						
6. Green solvents. Supercritical extraction.						
7. Ionic liquids.						
9. Biocatalysis. Green catalysts for industry.						
10. Hydrogen peroxide for minimization of waste.						
11. Green chemistry in practice.						
12. Intensification processes in green chemistry.						
13. Green synthesis of nanomaterials.						
Self-study:						
1. Calculations in green chemistry.						
Suggested readings:						
1. J.H. Clark and D. MacQuarrie. Handbook of Green Chemistry and Teconology. 2002.						
ISBN: 0632057157. 560p.						

2. M. Lancaster. Green Chemistry. 2010, ISBN: 0854046208, 310 P.						
3. P.T. Anastas, Chao-Jun Li. Handbook of Green Chemistry. Vol. 1-5: 2010,						
ISBN:3527315748. 410 p.						
Language of Instruction: slovak						
Other course information:						
Grading history						
	-					
Α	В	С	D	Е	FX	
0%	0%	0%	0%	0%	0%	
Lecturer/Instructor:						
Doc. Ruslan Mariychuk, PhD lectures						
RNDr. Romana Smolková, PhD. – seminars						
Last update: 9. May 2022						
Approved by: uvádza sa meno a priezvisko zamestnanca vysokej školy (štandardne garant						
študijného programu), ktorý zmenu schválil						